24小时热门版块排行榜    

查看: 4780  |  回复: 31

yexuqing

木虫之王 (文学泰斗)

太阳系系主任

一篇来自中国科学院研究团队的最新发表在arXiv网站的预印本论文可能为“LK-99是室温超导体”画上了句号。

近日,因为LK-99材料被韩国研究团队宣称能够室温超导,研究LK-99的预印本论文“涌入”arXiv网站。但可能马上就要告一段落:最新发表在arXiv网站的一篇预印本论文不仅表示LK-99能室温超导是假象,还找到产生这一假象的原因——硫化亚铜杂质。

此外,来自北京大学量子材料科学中心、美国普林斯顿大学等机构的科研团队也分别提交预印本论文称,虽然观察到其“烧制”的LK-99样品均未表现出超导性,更像磁体,而非室温超导体。

8月9日,前述论文的通讯作者之一、中国科学院物理研究所研究员、博士生导师雒(luò)建林告诉澎湃科技,“我们的工作指出了把LK-99错认成超导体的原因。”“实验结果表明(LK-99能常压室温超导)是假象,来源于硫化亚铜。”“LK-99不超导!  虽然相关样品具有弱抗磁性,但不具有完全抗磁性,也没有零电阻现象。”

该论文于8月8日15时59分提交至arXiv网站,目前已对外发布。

中国科学院物理研究所团队:LK-99像超导,但实际不是,硫化亚铜导致假象

硫化亚铜是“烧制”LK-99过程中的产物之一。LK-99是铜掺杂的铅磷灰石材料,成分为Pb10-xCux(PO4)6O (0.9<x<1.1)。

在实验中,吴伟等研究人员“烧制”了不同硫化亚铜含量的两种LK-99,分别测量其电阻、抗磁性等参数,并与纯硫化亚铜的相应参数进行对比。其中,样品1(S1)的反映硫化亚铜含量的“强度比”参数约是5%,样品2(S2)的这一参数约是70%。

实验结果显示,样品S1在370K(96.85摄氏度) 时电阻率跃变,并伴有热滞后现象;样品S2在370K(96.85摄氏度)时电阻率急剧下降,在100K(零下173.15摄氏度)以下,电阻率随着温度的降低而增加,表现出类似半导体的特征。

临界温度下的零电阻和完全抗磁性,是超导体的两个重要特征。

雒建林向澎湃科技表示,硫化亚铜在400K(126.85摄氏度)附近存在一个由“六角相”到“单斜相”的结构相变。在相变点附近,其电阻下降3个多量级。这看起来像“超导”相变,但实际不是。目前的实验证据表明,无法通过增减样品中硫化亚铜的含量或其他办法实现超导。

前述论文写道,“我们认为,LK-99中所谓的超导行为很可能是由于硫化亚铜在385K(111.85摄氏度)左右发生一阶结构相变,从高温下的β相变为低温下的γ相,从而导致电阻率降低。”

据澎湃新闻此前报道,7月22日上午,韩国量子能源研究中心公司相关研究团队在预印本网站arXiv上先后提交两篇类似的论文,宣称一种命名为LK-99的铜掺杂铅磷灰石材料拥有“室温+常压”超导能力。随后,国际上多个研究团队开始重复实验,尝试合成LK-99,以复现韩国团队的实验结果。相关消息对全球股市也产生了影响。

7月31日16时13分,北京航空航天大学材料科学与工程学院刘知琪教授团队在预印本网站arXiv上提交论文。该论文称,其合成的LK-99样品的室温电阻不为零,也没有观察到它存在磁悬浮现象;该材料类似半导体,而非超导体。

8月2日14时59分,东南大学物理学院教授、博士生导师孙悦在预印本网站arXiv提交论文称,在100K(零下173.15摄氏度)以上温度时,其LK-99样品测得零电阻,但是没有抗磁性。孙悦在视频中称,一共测了6片样品,但只在1片样品里面观测到了零电阻,其他样品大多数产生的是半导体的行为。其论文称,“我们的发现表明,Pb10-xCux(PO4)6O有可能成为寻找高温超导体的候选材料。”


北京航空航天大学科研团队提交预印论文称,没有在重复实验中观察到磁悬浮现象。

北京大学量子材料科学中心团队:观察到LK-99样品“半悬浮”,但不具超导性

8月6日13时34分,北京大学量子材料科学中心(ICQM)科研人员在预印本网站arXiv提交了一篇题为《类LK-99合成样品的铁磁半悬浮现象》(Ferromagnetic half levitation of LK-99-like synthetic samples)的研究文章。

该论文称,环境条件下的磁半悬浮被认为是一种“壮观且容易获得”的现象,因此一直是LK-99材料验证实验尝试的重点。北京大学研究团队虽然在一些片状的小碎片样品中成功地观测到了“磁半悬浮”现象,但经测量,其样品中不存在迈斯纳效应或零电阻,因此不具有超导性。实验结果表明,其样品普遍含有微弱但确定的软铁磁成分。


北京大学量子材料科学中心(ICQM)科研团队合成的LK-99样品。

研究团队认为,软铁磁足以解释其样品在强垂直磁场中的半悬浮现象。该论文称,“最近的计算显示,Pb10-xCux(PO4)6O中存在平带状电子结构,这可能会导致自发铁磁性,值得进一步研究。”

北京大学副教授、北京大学量子材料科学中心研究员、博士生导师贾爽和北京大学副教授李源是上述论文的通讯作者。

华中科技大学团队:样品可大角度“半悬浮”,但未测电阻

8月3日凌晨3时13分,曾在哔哩哔哩网站发布LK-99验证实验视频而引起轰动的华中科技大学材料科学与工程学院常海欣教授团队在预印本网站arXiv提交论文,公开了他们的实验进展。该论文的标题是《LK-99的成功合成和室温常压磁悬浮》(Successful growth and room temperature ambient-pressure magnetic levitation of LK-99)。


华中科技大学材料科学与工程学院常海欣教授团队合成LK-99的实验步骤和最终样品。

该论文称,他们成功合成了LK-99材料,并在室温和环境压力下能以较大的角度“半悬浮”。“我们的研究结果表明了结晶度和适当的铜掺杂的重要性,表明了这种磷酸盐氧化物中铜氧诱导带变化的基本潜在超导机制。我们期待更多一致的测试,如室温下的电学测试,将显示出这种磷酸盐氧化物的巨大潜力。”

华中科技大学8月1日首发在国内网站哔哩哔哩(B站)上关于LK-99材料重复实验的视频,在国内外社交媒体上大火。相关视频被列为前述论文的补充材料。

相关视频的简介写道,“华中科技大学材料学院博士后武浩、博士生杨丽,在常海欣教授的指导下,成功首次验证合成了可以磁悬浮的LK-99晶体,该晶体悬浮的角度比Sukbae Lee等人获得的样品磁悬浮角度更大,有望实现真正意义的无接触超导磁悬浮。”

相关视频的发布者称,尚未测量相关样品的电阻。因为测电阻需要微纳加工,破坏样品。“目前只有一片很小的样品,不敢动,实在不敢动。”正在加急“烧制”第三批样品。

美国普林斯顿大学等机构联合团队:LK-99样品透明,排除超导

8月9日,美国普林斯顿大学一篇预印本论文未发先火,引起了人们关注。该论文印证了北京大学量子材料科学中心科研团队的实验结果和结论。


透明的LK-99样品。

美国普林斯顿大学前述论文虽已提交,但尚未被预印本网站正式发布,作者已将其上传至网盘,并于9日分享到社交媒体网站上。

该论文相关研究由美国普林斯顿大学物理系、化学系,美国俄勒冈大学化学与生物化学系,德国马克斯·普朗克固体化学物理学研究所等机构的科研人员联合完成。

该论文称,在最近的一系列报道中,掺杂磷灰石铅(LK-99)被认为是一种候选的常温常压超导体。然而,从实验和理论角度来看,这些说法在很大程度上都没有得到证实。为此,研究团队合成了LK-99样品,但分析结果表明,其样品没有表现出高温超导性。


美国普林斯顿大学物理系、化学系,美国俄勒冈大学化学与生物化学系,德国马克斯·普朗克固体化学物理学研究所等机构的科研人员联合完成的一篇预印本论文称,LK-99样品更有可能是磁体,而不是常温常压超导体。

研究人员计算发现,该材料的六边形通道中可能含有 OH-阴离子,而不是二价氧阴离子;而且铜的替代在热力学上是非常不利的。“平衡结构的声子光谱显示出许多不稳定的声子模式。”“尽管最初曾试图以这种方式对 LK-99 进行建模,但铜是否以有意义的浓度进入该结构,仍值得怀疑。” “这种带不太可能支持强超流性,反而容易在低温下产生铁磁性(或平面外反铁磁性)。”“总之,Pb9Cu(PO4)6(OH)2更有可能是磁体,而不是常温常压超导体。”
----
31楼2023-08-10 14:50:57
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

yexuqing

木虫之王 (文学泰斗)

太阳系系主任

LK-99,一种2周多以前被韩国量子能源研究中心公司团队及相关团队宣称能够实现室温超导的神奇材料,其神话正在被终结。

8月11日17时47分,位于德国斯图加特的马克斯普朗克固体研究所的科学家帕斯卡·普帕尔(Pascal Puphal)提交的预印本论文,可能完成了对LK-99的“最后一击”。

该论文称,他们成功合成了不含硫化亚铜杂质的紫色透明的LK-99单晶体样品,经测定,排除其超导的可能性。

此外,当地时间8月16日,国际学术期刊《自然》(Nature)官网发布新闻,“LK-99不是超导体——科学侦探们如何解开这个谜团”,梳理了今年夏天这一最热闹的科学事件,以及人们的反思。

LK-99是一种铜掺杂铅磷灰石材料。前述新闻文章称,现在,经过数十次复制努力,许多专家自信地说,证据表明LK-99不是室温超导体。

前述文章由美国科学记者、自由撰稿人丹尼尔·加里斯托(Daniel Garisto)撰写。他写道,世界不同地区和实验室科学家对LK-99的复制验证实验与研究工作,一同拼凑出了“为什么这个材料表现出类似超导行为”这一谜团的答案。

疯传的“半悬浮”或悬浮视频

2周多以前,7月22日上午,两篇宣称LK-99能够在“室温+常压”条件下超导的论文先后在预印本网站arXiv上公开。这是一种铜掺杂铅磷灰石材料,其成分为Pb10-xCux(PO4)6O (0.9<x<1.1)。两篇论文的署名作者主要是韩国量子能源研究中心公司相关研究团队成员以及前成员。第二篇论文由美国威廉玛丽学院物理学研究教授金铉德(Hyun tak Kim)提交。

LK-99呈现出的特性——在磁铁上方半悬浮,电阻率在特定温度时突然下降,让人们惊呼:难道它真的是全世界首款室温常压超导材料?虽然预印本论文是未经同行评议、尚未正式发表的论文,但前述论文中的说法和金铉德此后公布的LK-99在磁体上“半悬浮”的视频很快传遍网络,并引爆学术界和社会舆论。

这是个巨大的突破,还是个乌龙?

在转变温度Tc以下呈现出零电阻和完全抗磁性是超导体的两个重要特性。但韩国团队在论文中公布的实验数据被认为不足以证明LK-99系超导体,因而受到质疑。国际上多个研究团队尝试合成LK-99,以验证其实验结果。

中文互联网网站抖音和哔哩哔哩(B站)上甚至分别出现了宣称实现LK-99样品完全磁悬浮的视频,引起人们关注和转发。但随后相关视频发布者澄清称,系杜撰,并非LK-99样品。

累积的证据

在被否定之前,一些理论计算甚至为“LK-99是室温超导体”提供了支持证据。

7月31日17时58分,美国劳伦斯伯克利国家实验室(LBNL)研究员西尼德·M·格里芬在预印本网站arXiv提交了标题为《铜掺杂的铅磷灰石中相关孤立扁平带的起源》(Origin of correlated isolated flat bands in copper-substituted lead phosphate apatite)论文,称对LK-99进行了密度泛函理论计算(DFT),确定了其在费米级上相关的孤立平带,“这是已建立的超导体家族中高转变温度的共同特征。”

该论文称,如果铜离子取代铅离子的位置合适,相关化合物可以显示出高温超导体的许多关键特征。

前述预印本论文公开后,很多人认为LK-99非常有希望是超导体。

北京航空航天大学科研团队提交预印论文称,没有在LK-99重复实验中观察到磁悬浮现象。

但7月31日16时13分,北京航空航天大学材料科学与工程学院刘知琪教授团队在预印本网站arXiv上提交论文称,他们根据韩国团队公布的方法合成了LK-99样品,没有发现其具有超导性。相关样品在室温下置于磁体顶部时,也没有观察到磁悬浮现象。该材料在室温下的电阻不为零。

8月2日14时59分,东南大学物理学院教授、博士生导师孙悦在预印本网站arXiv提交论文称,6片样品中的1片样品在100K(零下173.15摄氏度)以上温度时,测得零电阻,但没有抗磁性。

8月6日13时34分,北京大学量子材料科学中心(ICQM)科研人员在预印本网站arXiv提交论文称,虽然在一些片状的小碎片LK-99样品中成功地观测到了“磁半悬浮”现象,但经测量,其样品中不存在迈斯纳效应或零电阻,因此不具有超导性。实验结果表明,其样品含有软铁磁成分。

由美国普林斯顿大学物理系、化学系,美国俄勒冈大学化学与生物化学系,德国马克斯·普朗克固体化学物理学研究所等机构的科研人员联合完成,并于8月9日提交的一篇预印本论文称,研究团队合成了LK-99样品,呈透明状,分析结果表明,该LK-99样品没有表现出高温超导性;铜的替代在热力学上是非常不利的;LK-99更有可能是磁体,而不是室温常压超导体。

他们进行X射线成像以确定LK-99样品的结构,并依此进行严格的计算。结果表明,LK-99中的“平带”来自强局域电子,无法按照超导体所需的方式“跳跃”。

从不纯的样品到单晶体:最后一击

每“烧制”1份铜掺杂磷酸铅晶体(纯LK-99),就会产生17份铜和5份硫。这些残留物会产生大量杂质,尤其是硫化亚铜。韩国团队在其论文中报告了这种情况。

韩国团队同时在预印本中指出,在一个特定温度下,LK-99的电阻率下降了十倍。美国伊利诺伊大学厄巴纳-香槟分校化学家普拉尚特·詹恩(Prashant Jain)向《自然》新闻表示,“104.8摄氏度,我当时想,等一下,我知道这个温度。”104摄氏度是硫化亚铜发生相变的温度。低于该温度时,硫化亚铜的电阻率急剧下降,这一现象几乎与LK-99所谓的超导相变相同。

8月9日20时57分,普拉尚特·詹恩提交预印本论文称,这意味着,必须在不含任何硫化亚铜的情况下合成LK-99,才能明确验证LK-99的是否具有超导特性。

稍早前,8月8日15时59分,中国科学院物理研究所研究员、博士生导师雒(luò)建林团队提交预印本论文,明确提出,“我们认为,LK-99中所谓的超导行为很可能是由于硫化亚铜在385K(111.85摄氏度)左右发生一阶结构相变,从高温下的β相变为低温下的γ相,从而导致电阻率降低。”

他们在实验中“烧制”了不同硫化亚铜含量的两种LK-99,分别测量其电阻、抗磁性等参数,并与纯硫化亚铜的相应参数进行对比。

雒建林告诉澎湃科技,LK-99不超导!实验结果表明,LK-99能常压室温超导是假象,这一假象来源于硫化亚铜。他们的工作指出了韩国团队把LK-99错认成超导体的原因。

对LK-99的“最后一击”或许来自完全不含硫化亚铜杂质的晶体样品。

8月11日17时47分,德国马克斯普朗克固体研究所的科学家帕斯卡·普帕尔(Pascal Puphal)提交预印本论文称,成功合成了LK-99单晶体,实验结果排除了该晶体样品存在超导电性的可能性。X射线分析显示,铜在整个样品中分布不均。

该论文称,这种晶体样品具有高度绝缘性,实验中检测到了弱铁磁相关性质,这可能源于

铜取代的不均匀分布所造成。实验结果表明,之前声称的LK-99中存在室温超导现象的可能性很小。

该论文的标题是《Pb10-xCux(PO4)6O的单晶合成、结构和磁性》(Single crystal synthesis, structure, and magnetism of Pb10−xCux(PO4)6O)。

对于前述LK-99单晶体样品的制备方法,该论文称,前驱体粉末是由9PbO :1CuO 和9NH4H2PO4混合而成。随后,将粉末进行20分钟的球磨,并将混合物装入氧化铝坩埚中转移到炉中,然后加热至750摄氏度,持续10小时,接着进行研磨,再加热10小时。将烧结材料填充到橡胶模中,用球磨法制备出圆柱形的进料棒和种子棒。橡胶是用Riken型S1-120型7万牛顿压力机在充满水的不锈钢模具中进行抽真空和压制。所有棒材均在 800摄氏度下进行热处理。第一次生长过程中,使用Riken压力机在直径为4毫米的压模中制备颗粒。单晶生长在晶体系统公司的光学图像炉CSC FZ-T-10000中进行。四盏功率为150瓦的卤素灯作为加热源。



德国马克斯普朗克固体研究所的科学家帕斯卡·普帕尔(Pascal Puphal)提交预印本论文称,成功合成了LK-99单晶体,实验结果排除了该晶体样品存在超导电性的可能性。

研究团队使用一种被称为浮区晶体生长的技术,避免将硫引入LK-99样品中。他们合成的Lk-99晶体透明,呈紫色。其电阻高达数百万欧姆,显示出轻微的铁磁性和抗磁性,但不足以实现部分悬浮。

研究小组认为,LK-99中看到的超导性迹象可归因于硫化亚铜杂质。而他们制备的LK-99晶体中不含有硫化亚铜杂质。

帕斯卡·普帕尔向《自然》新闻表示,“这个故事准确地说明了为什么我们需要单晶,”“当我们拥有单晶时,我们可以清楚地研究系统的内在特性。”

马克斯·普朗克固体研究所官网对帕斯卡·普帕尔介绍称,“我是使用各种技术进行单晶生长的专家,特别关注高压下的生长,例如浮区-、水热-、助熔剂-和布里奇曼增​生长。”“我正在研究不同的量子自旋系统,目前专注于超导体,但仍在继续进行拓扑系统、低维磁体和受挫磁性方面的项目。”

“收获”

据《自然》新闻报道,美国新泽西州普林斯顿大学的固态化学家莱斯利·肖普(Leslie Schoop)是美国和欧洲联合团队关于LK-99研究预印本论文的作者之一。她向《自然》新闻表示,“甚至在 LK-99之前,我就一直在谈论如何小心使用DFT,现在我为下个暑期学校准备了一个最好的故事。”

普拉尚特·詹恩指出了经常被忽视的旧数据的重要性。他引用的硫化亚铜电阻率的关键测量结果来自62年前,于1951年发表。

澳大利亚墨尔本莫纳什大学的物理学家迈克尔·富勒 (Michael Fuhrer) 向《自然》新闻表示,唯一进一步的确认将来自韩国团队分享他们的样品。他说,“他们有责任说服其他人。”

但对于LK-99能室温超导的说法,美国加州大学戴维斯分校物理与天文系副教授、凝聚态物质实验专家因娜·维希克表示,她认为,这件事已经划上句号了。

1986年,当铜氧化物超导体被发现时,人们立即开始探索其特性。但近四十年后,人们对这种材料的超导机制仍然存在争议。与此相比,解释LK-99的努力水到渠成。因娜·维希克表示,将LK-99原始观测结果的所有片段整合在一起的“侦查工作”,“我认为真是太棒了,而且比较罕见。”

来源:澎湃新闻
----
32楼2023-08-18 10:55:04
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 yexuqing 的主题更新
最具人气热帖推荐 [查看全部] 作者 回/看 最后发表
[硕博家园] 论大家对6070后普通教授导师的看法 +8 SNaiL1995 2024-05-28 13/650 2024-06-03 02:26 by 梨花儿
[论文投稿] Scientific reports 投稿 +4 chencome12 2024-06-02 4/200 2024-06-02 21:39 by lizhengke06
[基金申请] 2024杰青和万人领军什么时候会评 +5 墨香琴韵 2024-06-02 5/250 2024-06-02 19:31 by xiaqiu
[基金申请] 入职高校3年发表10+SCI,尽人事听天命 +33 kaoyan250 2024-05-27 48/2400 2024-06-02 19:17 by kaoyan250
[基金申请] 化学B02口青基 代表作都是什么水平的?向大佬求助 +12 arthas_007 2024-06-01 14/700 2024-06-02 16:18 by 夏木荫浓
[基金申请] 九部门发文:不得将专利授权数量作为人才评价、项目评审、职称评定、高校评价等的条件 +17 sjtu2012 2024-05-28 21/1050 2024-06-02 13:43 by 欢乐颂叶蓁
[论文投稿] 选期刊 5+3 jfdhj 2024-05-29 4/200 2024-06-02 13:30 by bobvan
[考博] 求25博导,金属增材制造方向 +3 22机械 2024-06-01 3/150 2024-06-02 11:17 by Napoleonsky
[教师之家] 在大地上我们只过一生---看完我的阿勒泰上头了好几天,完结那天晚上几乎失眠 +11 瞬息宇宙 2024-05-27 13/650 2024-06-01 22:15 by otani
[考研] 研0二导师分到新来的博士后靠谱吗 +7 sone9 2024-05-31 7/350 2024-06-01 19:10 by 梦燕园
[考博] 24or25材料专业申博 +4 农夫三拳有点痛 2024-05-30 11/550 2024-06-01 14:45 by Napoleonsky
[基金申请] B口人才项目 +9 WOWO159357 2024-05-29 19/950 2024-06-01 14:24 by linxuhuizj
[硕博家园] 哈工大硕博招生!博士每月入学! +4 nailooo 2024-05-30 5/250 2024-06-01 06:47 by anevay
[文学芳草园] 对对子啊 +5 天若孤独 2024-05-29 7/350 2024-05-31 09:00 by wjykycg
[材料综合] 真空封石英管 北京 +4 dessha 2024-05-29 5/250 2024-05-30 16:40 by mpdfwxgui
[论文投稿] 审稿专家比较坚定的让补充实验,但实在没法补充实验,修回还有希望吗? (EPI+1) 3+3 qweasd12345 2024-05-29 6/300 2024-05-30 08:11 by qweasd12345
[博后之家] 2024公派博后申请 +4 326lhpqk 2024-05-27 5/250 2024-05-29 20:03 by @古月胡
[论文投稿] 有没有老师需要发表论文 +4 金老师论文助理- 2024-05-29 4/200 2024-05-29 16:51 by liuyupu132
[基金申请] 信息学部函评结束了吗? +6 ducan21 2024-05-28 7/350 2024-05-29 12:10 by WORLD0256
[有机交流] 奇怪的物质 100+4 桃桃PXS 2024-05-27 7/350 2024-05-28 10:22 by 091602
信息提示
请填处理意见